Chain Graphs : Interpretations, Expressiveness and Learning Algorithms
نویسنده
چکیده
Probabilistic graphical models are currently one of the most commonly used architectures for modelling and reasoning with uncertainty. The most widely used subclass of these models is directed acyclic graphs, also known as Bayesian networks, which are used in a wide range of applications both in research and industry. Directed acyclic graphs do, however, have a major limitation, which is that only asymmetric relationships, namely cause and effect relationships, can be modelled between their variables. A class of probabilistic graphical models that tries to address this shortcoming is chain graphs, which include two types of edges in the models representing both symmetric and asymmetric relationships between the variables. This allows for a wider range of independence models to be modelled and depending on how the second edge is interpreted, we also have different so-called chain graph interpretations. Although chain graphs were first introduced in the late eighties, most research on probabilistic graphical models naturally started in the least complex subclasses, such as directed acyclic graphs and undirected graphs. The field of chain graphs has therefore been relatively dormant. However, due to the maturity of the research field of probabilistic graphical models and the rise of more data-driven approaches to system modelling, chain graphs have recently received renewed interest in research. In this thesis we provide an introduction to chain graphs where we incorporate the progress made in the field. More specifically, we study the three chain graph interpretations that exist in research in terms of their separation criteria, their possible parametrizations and the intuition behind their edges. In addition to this we also compare the expressivity of the interpretations in terms of representable independence models as well as propose new structure learning algorithms to learn chain graph models from data. This work is funded by the Swedish Research Council (ref. 2010-4808).
منابع مشابه
On expressiveness of the chain graph interpretations
In this article we study the expressiveness of the different chain graph interpretations. Chain graphs is a class of probabilistic graphical models that can contain two types of edges, representing different types of relationships between the variables in question. Chain graphs is also a superclass of directed acyclic graphs, i.e. Bayesian networks, and can thereby represent systems more accura...
متن کاملLearning Marginal AMP Chain Graphs under Faithfulness
Marginal AMP chain graphs are a recently introduced family of models that is based on graphs that may have undirected, directed and bidirected edges. They unify and generalize the AMP and the multivariate regression interpretations of chain graphs. In this paper, we present a constraint based algorithm for learning a marginal AMP chain graph from a probability distribution which is faithful to ...
متن کاملLearning marginal AMP chain graphs under faithfulness revisited
Marginal AMP chain graphs are a recently introduced family of models that is based on graphs that may have undirected, directed and bidirected edges. They unify and generalize the AMP and the multivariate regression interpretations of chain graphs. In this paper, we present a constraint based algorithm for learning a marginal AMP chain graph from a probability distribution which is faithful to ...
متن کاملMETA-HEURISTIC ALGORITHMS FOR MINIMIZING THE NUMBER OF CROSSING OF COMPLETE GRAPHS AND COMPLETE BIPARTITE GRAPHS
The minimum crossing number problem is among the oldest and most fundamental problems arising in the area of automatic graph drawing. In this paper, eight population-based meta-heuristic algorithms are utilized to tackle the minimum crossing number problem for two special types of graphs, namely complete graphs and complete bipartite graphs. A 2-page book drawing representation is employed for ...
متن کاملChain graph interpretations and their relations revisited
In this paper we study how different theoretical concepts of Bayesian networks have been extended to chain graphs. Today there exist mainly three different interpretations of chain graphs in the literature. These are the Lauritzen-Wermuth-Frydenberg, the Andersson-Madigan-Perlman and the multivariate regression interpretations. The different chain graph interpretations have been studied indepen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016